Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation.

Identifieur interne : 000672 ( Main/Exploration ); précédent : 000671; suivant : 000673

Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation.

Auteurs : Jong Gyu Lim [Corée du Sud] ; Ye-Ji Bang [Corée du Sud] ; Sang Ho Choi [Corée du Sud]

Source :

RBID : pubmed:25398878

Descripteurs français

English descriptors

Abstract

Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis.

DOI: 10.1074/jbc.M114.611020
PubMed: 25398878
PubMed Central: PMC4276887


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation.</title>
<author>
<name sortKey="Lim, Jong Gyu" sort="Lim, Jong Gyu" uniqKey="Lim J" first="Jong Gyu" last="Lim">Jong Gyu Lim</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bang, Ye Ji" sort="Bang, Ye Ji" uniqKey="Bang Y" first="Ye-Ji" last="Bang">Ye-Ji Bang</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Sang Ho" sort="Choi, Sang Ho" uniqKey="Choi S" first="Sang Ho" last="Choi">Sang Ho Choi</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea choish@snu.ac.kr.</nlm:affiliation>
<country wicri:rule="url">Corée du Sud</country>
<wicri:regionArea>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25398878</idno>
<idno type="pmid">25398878</idno>
<idno type="doi">10.1074/jbc.M114.611020</idno>
<idno type="pmc">PMC4276887</idno>
<idno type="wicri:Area/Main/Corpus">000578</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000578</idno>
<idno type="wicri:Area/Main/Curation">000578</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000578</idno>
<idno type="wicri:Area/Main/Exploration">000578</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation.</title>
<author>
<name sortKey="Lim, Jong Gyu" sort="Lim, Jong Gyu" uniqKey="Lim J" first="Jong Gyu" last="Lim">Jong Gyu Lim</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bang, Ye Ji" sort="Bang, Ye Ji" uniqKey="Bang Y" first="Ye-Ji" last="Bang">Ye-Ji Bang</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Choi, Sang Ho" sort="Choi, Sang Ho" uniqKey="Choi S" first="Sang Ho" last="Choi">Sang Ho Choi</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea choish@snu.ac.kr.</nlm:affiliation>
<country wicri:rule="url">Corée du Sud</country>
<wicri:regionArea>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921</wicri:regionArea>
<placeName>
<settlement type="city">Séoul</settlement>
<region type="capital">Région capitale de Séoul</region>
</placeName>
<orgName type="university">Université nationale de Séoul</orgName>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (physiology)</term>
<term>Base Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Female (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Mice, Inbred ICR (MeSH)</term>
<term>Microbial Viability (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Peroxiredoxin III (chemistry)</term>
<term>Peroxiredoxin III (physiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Vibrio Infections (microbiology)</term>
<term>Vibrio vulnificus (enzymology)</term>
<term>Vibrio vulnificus (pathogenicity)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Femelle (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Infections à Vibrio (microbiologie)</term>
<term>Peroxiredoxin III (composition chimique)</term>
<term>Peroxiredoxin III (physiologie)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (physiologie)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Souris de lignée ICR (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Viabilité microbienne (MeSH)</term>
<term>Vibrio vulnificus (enzymologie)</term>
<term>Vibrio vulnificus (pathogénicité)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peroxiredoxin III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Peroxiredoxin III</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peroxiredoxin III</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Vibrio vulnificus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Vibrio vulnificus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Infections à Vibrio</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Vibrio Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Vibrio vulnificus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Vibrio vulnificus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Peroxiredoxin III</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Female</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Mice, Inbred ICR</term>
<term>Microbial Viability</term>
<term>Molecular Sequence Data</term>
<term>Oxidative Stress</term>
<term>Promoter Regions, Genetic</term>
<term>Transcription, Genetic</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Femelle</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Sites de fixation</term>
<term>Souris de lignée ICR</term>
<term>Stress oxydatif</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Transcription génétique</term>
<term>Viabilité microbienne</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25398878</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation.</ArticleTitle>
<Pagination>
<MedlinePgn>36263-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M114.611020</ELocationID>
<Abstract>
<AbstractText>Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis. </AbstractText>
<CopyrightInformation>© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lim</LastName>
<ForeName>Jong Gyu</ForeName>
<Initials>JG</Initials>
<AffiliationInfo>
<Affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bang</LastName>
<ForeName>Ye-Ji</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Choi</LastName>
<ForeName>Sang Ho</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea choish@snu.ac.kr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.15</RegistryNumber>
<NameOfSubstance UI="D061105">Peroxiredoxin III</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008813" MajorTopicYN="N">Mice, Inbred ICR</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050296" MajorTopicYN="N">Microbial Viability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061105" MajorTopicYN="N">Peroxiredoxin III</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014735" MajorTopicYN="N">Vibrio Infections</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041261" MajorTopicYN="N">Vibrio vulnificus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bacterial Pathogenesis</Keyword>
<Keyword MajorTopicYN="N">Gene Regulation</Keyword>
<Keyword MajorTopicYN="N">Iron Starvation</Keyword>
<Keyword MajorTopicYN="N">IscR</Keyword>
<Keyword MajorTopicYN="N">Oxidative Stress</Keyword>
<Keyword MajorTopicYN="N">Peroxiredoxin</Keyword>
<Keyword MajorTopicYN="N">Reactive Oxygen Species (ROS)</Keyword>
<Keyword MajorTopicYN="N">Vibrio vulnificus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25398878</ArticleId>
<ArticleId IdType="pii">M114.611020</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M114.611020</ArticleId>
<ArticleId IdType="pmc">PMC4276887</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 19;277(16):13609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11832487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 9;278(19):16658-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Jan;2(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 May;52(3):861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15101990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Oct;2(10):820-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1981 Apr 5;147(2):217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6270337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Mar;178(5):1310-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8631707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1997 Jan;10(1):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8993856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1999 Feb;15(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10024467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 1999 Apr;2(2):188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 22;274(43):30451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Mar 4;346(4):1021-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 May;60(4):1058-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16677314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Jul;61(1):206-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31736-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2007;44:27-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18084888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2007;44:61-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18084890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2007;44:143-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18084893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:755-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Feb;191(4):1248-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Mar 20;387(1):28-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19361432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2009 May;276(9):2469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19476488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9416-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2009 Oct;47(5):624-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19851736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Jan 1;201(1):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19919301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 16;49(6):1319-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20078128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Jun;8(6):436-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20467446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Aug 1;13(3):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(8):e1000949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Mar 15;14(6):1049-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20626317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Toxicol. 2011 Aug;Chapter 7:Unit7.9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21818754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Aug;158(Pt 8):2017-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22679105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2012 Sep 15;525(2):161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22381957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Oct;194(20):5495-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22797754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Dec 14;287(51):42516-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23095744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Feb;87(3):478-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Jun;20(6):740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Aug;1830(8):4073-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23624334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Jul;11(7):443-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23712352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2014 Feb;82(2):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24478072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2014 May;52(5):413-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24535746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jun;10(6):e1004194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Sep;93(5):992-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25041181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 28;275(4):2924-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jul 7;275(27):20346-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10751410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8841-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Aug;183(15):4562-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
<region>
<li>Région capitale de Séoul</li>
</region>
<settlement>
<li>Séoul</li>
</settlement>
<orgName>
<li>Université nationale de Séoul</li>
</orgName>
</list>
<tree>
<country name="Corée du Sud">
<region name="Région capitale de Séoul">
<name sortKey="Lim, Jong Gyu" sort="Lim, Jong Gyu" uniqKey="Lim J" first="Jong Gyu" last="Lim">Jong Gyu Lim</name>
</region>
<name sortKey="Bang, Ye Ji" sort="Bang, Ye Ji" uniqKey="Bang Y" first="Ye-Ji" last="Bang">Ye-Ji Bang</name>
<name sortKey="Choi, Sang Ho" sort="Choi, Sang Ho" uniqKey="Choi S" first="Sang Ho" last="Choi">Sang Ho Choi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000672 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000672 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25398878
   |texte=   Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25398878" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020